导读 用hive来做数仓类操作,或者大数据的运算,是没有疑问的,至少在你没有更多选择之前。当我们要hive来做类似于大批量数据的select时,也许问题就会发生了变化。
1. 通用解决方案之分页

首先,我们要基于一个事实,就是没有哪个数据库可以无限制的提供我们select任意数据量的数据。比如常用的 mysql, oracle, 一般你select 10w左右的数据量时已经非常厉害了。而我们的解决方法也比较简单,那就是分页获取,比如我一页取1w条,直到取完为止。同样,因为hive基于都支持sql92协议,所以你也可以同样的方案去解决大数据量的问题。

分页的解决方案会有什么问题?首先,我们要明白分页是如何完成的,首先数据库server会根据条件运算出所有或部分符合条件的数据(取决是否有额外的排序),然后再根据分页偏移信息,获取相应的数据。所以,一次次的分页,则必定涉及到一次次的数据运算。这在小数据量的情况下是可以接受的,因为计算机的高速运转能力。但是当数据量大到一定程序时,就不行了。比如我们停滞了许多年的大数据领域解决方案就是很好的证明。

本文基于hive处理数据,也就是说数据量自然也是大到了一定的级别,那么用分页也许就不好解决问题了。比如,单次地运算也许就是3-5分钟(基于分布式并行计算系统能力),当你要select 100w数据时,如果用一页1w的运算,那么就是100次来回,1次3-5分钟,100次就是5-8小时的时间,这就完全jj了。谁能等这么长时间?这样处理的最终结果就是,业务被砍掉,等着财务结账了。

所以,我们得改变点什么!

2. 使用hive-jdbc

jdbc本身不算啥,只是一个连接协议。但它的好处在于,可以维持长连接。这个连接有个好处,就是server可以随时输出数据,而client端则可以随时处理数据。这就给了我们一个机会,即比如100w的数据运算好之后,server只需源源不断的输出结果,而client端则源源不断地接收处理数据。

所以,我们解决方案是,基于hive-jdbc, 不使用分页,而全量获取数据即可。这给我们带来莫大的好处,即一次运算即可。比如1次运算3-5分钟,那么总共的运算也就是3-5分钟。

看起来不错,解决了重复运算的问题。好似万事大吉了。

具体实现就是引入几个hive-jdbc的依赖,然后提交查询,依次获取结果即可。样例如下:

//pom 依赖
////mvnrepository.com/artifact/org.apache.hive/hive-jdbc 
<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-jdbc</artifactId> 
    <version>2.3.4</version> 
</dependency>
// 测试hive-jdbc 
import java.sql.Connection; 
import java.sql.PreparedStatement; 
import java.sql.ResultSet; 
import java.sql.SQLException; 
import java.sql.Statement; 
 
import java.sql.DriverManager; 
  
public class HiveJdbcTest { 
    private static Connection conn = getConnnection(); 
    private static PreparedStatement ps; 
    private static ResultSet rs; 
    // 获取所有数据 
    public static void getAll(String tablename) { 
        String sql="select * from " + tablename; 
        System.out.println(sql); 
        try { 
            ps = prepare(conn, sql); 
            rs = ps.executeQuery(); 
            int columns = rs.getMetaData().getColumnCount(); 
            while(rs.next()) { 
                for(int i=1;i<=columns;i++) { 
                    System.out.print(rs.getString(i));   
                    System.out.print("\t\t"); 
                } 
                System.out.println(); 
            } 
        }  
        catch (SQLException e) { 
            e.printStackTrace(); 
        } 
  
    } 
    // 测试 
    public static void main(String[] args) {  
        String tablename="t1"; 
        HiveJdbcTest.getAll(tablename); 
    } 
  
    private static String driverName = "org.apache.hive.jdbc.HiveDriver"; 
    private static String url = "jdbc:hive2://127.0.0.1:10000/"; 
    private static Connection conn; 
    // 连接hive库 
    public static Connection getConnnection() { 
        try { 
            Class.forName(driverName); 
            conn = DriverManager.getConnection(url, "hive", "123"); 
        } 
        catch(ClassNotFoundException e) { 
            e.printStackTrace(); 
        } 
        catch (SQLException e) { 
            e.printStackTrace(); 
        } 
        return conn; 
    } 
    public static PreparedStatement prepare(Connection conn, String sql) { 
        PreparedStatement ps = null; 
        try { 
            ps = conn.prepareStatement(sql); 
        }  
        catch (SQLException e) { 
            e.printStackTrace(); 
        } 
        return ps; 
    } 
} 

样例代码,无需纠结。简单的jdbc操作样板。总体来说就是,不带分页的接收全量数据。

但是,这个会有什么问题?同样,小数据量时无任何疑问,但当数据量足够大时,每一次的数据接收,都需要一次网络通信请示,且都是单线程的。我们假设接受一条数据花费1ms, 那么接收1000条数就是1s, 6k条数据就是1min。36w条数据就是1h, 额,后面就无需再算了。同样是不可估量的时间消耗。(实际情况也许会好点,因为会有buffer缓冲的存在)

为什么会这样呢?运算量已经减小了,但是这网络通信量,我们又能如何?实际上,问题不在于网络通信问题,而在于我们使用这种方式,使我们从并行计算转到了串行计算的过程了。因为只有单点的数据接收,所以只能将数据汇集处理。从而就是一个串行化的东西了。

所以,我们更多应该从并行这一层面去解决问题。

3. 基于临时表实现

要解决并行变串行的问题,最根本的办法就是避免一条条读取数据。而要避免这个问题,一个很好想到的办法就是使用临时表,绕开自己代码的限制。让大数据集群自行处理并行计算问题,这是个不错的想法。

但具体如何做呢?我们面临至少这么几个问题:

    如何将数据写入临时表?
    写入临时表的数据如何取回?是否存在瓶颈问题?
    临时表后续如何处理?

我们一个个问题来,第1个,如何写临时表问题:我们可以选择先创建一个临时表,然后再使用insert into select ... from ... 的方式写入,但这种方式非常费力,首先你得固化下临时表的数据结构,其次你要处理多次写入问题。看起来不是最好的办法。幸好,hive中或者相关数据库产品都提供了另一种更方便的建临时表的方法: create table xxx as select ... from ... 你只需要使用一个语句就可以将结果写入到临时表了。但需要注意的是,我们创建时,需要指定好我们需要的格式,否则最终结果也许不是我们想要的,比如我们需要使用','分隔数据而非tab, 我们需要使用 text 形式的数据,而非压缩的二进制格式。

以下是个使用样例:

-- 外部使用 create table 包裹 
CREATE TABLE tmp_2020110145409001  
    ROW FORMAT DELIMITED 
    FIELDS TERMINATED BY ',' 
    STORED AS TEXTFILE as  
        -- 具体的业务select sql 
        select t1.*, t2.* from test t1 left join test2 t2 on t1.id = t2.t_id 
    ; 

如此,我们就得到所需的结果了。以上结果,在hive中表现为一个临时表。而其背后则是一个个切分的文件,以','号分隔的文本文件,且会按照hive的默认存储目录存放。(更多具体语法请查询官网资料)

接下来,我们要解决第2个问题:如何将数据取回?这个问题也不难,首先,现在结果已经有了,我们可以一行行地读取返回,就像前面一样。但这时已经没有了数据运算,应该会好很多。但明显还是不够好,我们仍然需要反复的网络通信。我们知道,hive存储的背后,是一个个切分的文件,如果我们能够将该文件直接下载下来,那将会是非常棒的事。不错,最好的办法就是,直接下载hive的数据文件,hive会存储目录下,以类似于 part_0000, part_0001... 之类的文件存放。

那么,我们如何才能下载到这些文件呢?hive是基于hadoop的,所以,很明显我们要回到这个问题,基于hadoop去获取这些文件。即 hdfs 获取,如下:

// 查看所有分片数据文件列表 
hdfs dfs -ls hdfs://xx/hive/mydb.db/* 
// 下载所有数据文件到 /tmp/local_hdfs 目录 
hdfs dfs -get hdfs://xx/hive/mydb.db/* /tmp/local_hdfs 

我们可以通过以上,将数据文件下载到本地,也可以hdfs的jar包,使用 hdfs-client 进行下载。优缺点是:使用cli的方式简单稳定但依赖于服务器环境,而使用jar包的方式则部署方便但需要自己写更多代码保证稳定性。各自选择即可。

最后,我们还剩下1个问题:如何处理临时表的问题?hive目前尚不支持设置表的生命周期(阿里云的maxcompute则只是一个 lifecycle 选项的问题),所以,需要自行清理文件。这个问题的实现方式很多,比如你可以自行记录这些临时表的创建时间、位置、过期时间,然后再每天运行清理表即可。再简单点就是你可以直接通过表名进行清理,比如你以年月日作为命令开头,那么你可以根据这日期删除临时表即可。如:

-- 列举表名 
show tables like 'dbname.tmp_20201101*'; 
-- 删除具体表名 
drop table dbname.tmp_2020110100001 ;  

至此,我们的所有问题已解决。总结下:首先使用临时表并行地将结果写入;其次通过hdfs将文件快速下载到本地即可;最后需要定时清理临时表;这样,你就可以高效,无限制的为用户拉取大批量数据了。

不过需要注意的是,我们的步骤从1个步骤变成了3个步骤,增加了复杂度。(实际上你可能还会处理更多的问题,比如元数据信息的对应问题)复杂度增加的最大问题就在于,它会带来更多的问题,所以我们一定要善于处理好这些问题,否则将会带来一副作用。

原文来自:

本文地址://q13zd.cn/hive-pulls-data-quickly.html编辑:KSJXAXOAS,审核员:逄增宝

Linux命令大全:

Linux系统大全:

红帽认证RHCE考试心得: